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Abstract

A variant of the filter-diagonalization method, using targeted excitation to filter out unwanted modes, can extract
exactly or nearly degenerate eigenmodes and frequencies from time-domain simulations. Excitation provides a particularly
simple way to produce filtered states with already-existing time-domain simulations, while requiring minimal storage space.
Moreover, using broader excitations that cover the entire range of desired frequencies requires just one-fifth as much com-
putation as using narrow excitations. With this method, almost any time-domain code can be easily turned into an efficient
eigenmode solver with little or no change to the code. To distinguish M degenerate modes requires running at least M dif-
ferent simulations, so the computational effort is proportional to the size of the degeneracy, no matter how closely-spaced
the modes; however, from those M simulations many other non-degenerate modes can also be extracted with high
accuracy, without much extra effort. This method allows relatively simple FDTD algorithms to compete with fre-
quency-domain solvers, offering advantages of simplicity, flexibility and ease of implementation; also, it scales to very large
problems and massively parallel computation, and it can be used to extract high-frequency modes without first having to
identify lower-frequency modes. The accuracy of this method is demonstrated by finding eigenmodes and frequencies of an
electromagnetic resonant cavity.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The time evolution of many systems (namely, linear systems invariant with respect to time translation) can
be described as the superposition of various eigenmodes oscillating at their respective eigenfrequencies. Insight
into such systems often comes from finding some of the eigenmodes and frequencies, a process equivalent to
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the partial diagonalization of a matrix. In contrast, time-domain methods describe the specific evolution of a
system by integrating the equations of motion forward in time from a given initial condition. Usually time
evolution and eigensolving are performed by very different algorithms; however, the filter-diagonalization
method (FDM) can find eigenmodes easily and efficiently from the time evolution of a system.

We will show how to extract eigenmodes efficiently from nearly any time-domain simulation (whether
real or complex) using FDM, using simple excitation to produce filtered states, rather than special fre-
quency filtration operators or post-simulation FFTs. Filtration by excitation performs as well as filter
operators, and for very large problems requires much less storage (and computation) than post-simulation
FFTs. Moreover, we have developed a faster filtration technique, exciting states containing roughly equal
amplitudes of all desired eigenmodes, rather than producing states filtered narrowly around individual
frequencies.

Because FDM competes well with dedicated eigenmode solvers, such as the Lanczos block algorithm [1],
this paper demonstrates a simple method with which any time-domain code can be turned into an eigenmode
solver with very little work; our electromagnetic time-domain code required no modifications to apply this
method – we simply had to write some short post-processing code (using standard linear algebra routines, such
as those in LAPACK).

Before describing the method in more detail, we list some general advantages common to FDM methods:

� Intensive computation can be done with matrix-vector multiplication; time-domain simulations can be used
for the intensive computation (in many cases) with no modification.
� Only one vector must be stored in memory.
� Eigenmodes need not be orthogonal.
� Eigenvalues in any range can be found.
� Degenerate modes can be found.
� Eigenvalue errors can be easily estimated.
� The method knows whether it has found all eigenvalues in the desired range.
� Accuracy increases more than exponentially with computation time, limited by machine precision times the

maximum/minimum eigenvalue ratio.

We will discuss the computationally intensive part of FDM in Section 4, where we compare our broad fil-
tering approach with the narrow filtering used by other FDM applications. However, before we get to that
most important section, we offer a brief overview of FDM (Section 2), and we review in Section 3 the linear
algebra necessary to perform the diagonalization part of filter-diagonalization. Understanding how the diag-
onalization works will facilitate discussion of the filtering.

We demonstrate the algorithm and determine its accuracy by finding eigenmodes of an electromagnetic res-
onant cavity: in Section 5 we run five simulations to find 15 eigenmodes and eigenfrequencies of a rectangular
cavity with 4-fold degeneracies.

2. FDM overview

The filter-diagonalization method [2–6] extracts eigenmodes and eigenvalues of a linear operator for which
the eigenvalues are related to mode frequencies. FDM has been applied in the literature mostly to the Schrö-
dinger equation for vibrational and electronic structure calculations of small molecules; FDM has also been
applied to NMR [7–9] (these are two-dimensional applications of FDM) and to a few electromagnetic calcu-
lations [10,11] (however, one of these uses a special time-advance that works only with complex fields, the
other does not calculate modes or use mode pattern information at all).

Filter-diagonalization partially diagonalizes a large matrix H by transforming H to block-diagonal form
with one small block and one large block (that is the filtering part). The large block is ignored, and the small
block is diagonalized by standard linear algebra routines appropriate for small matrices (and that is the diag-
onalization part). The diagonalization of the small matrix can be accomplished in a few seconds, but intensive
computation is required to put H in block diagonal form; this computation generally involves many matrix-
vector multiplications using H.
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H is transformed to block-diagonal form by finding a small, invariant subspace of H; we call this subspace
an eigen-subspace, because it has a basis of eigenvectors. Finding an eigen-subspace means finding a set of
vectors s1, . . . , sL that spans the subspace. From these vectors we can make a basis for the subspace, and,
applying H to each basis vector, we can compute the matrix of H restricted to this subspace (the small block).

The s‘ are found by filtering eigenvectors based on their eigenvalues, by associating eigenvalues with fre-
quencies. For example, if the vector s(t) evolves as the sum of eigenmodes oscillating with frequencies that
are eigenvalues of H, we can Fourier transform s(t) to select eigenvectors with eigenvalues near a desired fre-
quency. Eigenvalue-based filtering is convenient because we usually know roughly the range of desired eigen-
values; it can quickly separate modes with far-apart frequencies.

FDM uses Fourier transformation or frequency filtering to separate a small range of eigenvalues from the
majority of eigenvalues (which are far away). Simple linear algebra can then be applied to separate the closely-
spaced eigenvalues in the desired range. Thus well-separated modes are distinguished by their different fre-
quencies while nearby modes are distinguished by their different mode patterns.

We wish particularly to emphasize that this method can distinguish degenerate eigenmodes, something that
time-domain codes are generally considered unable to do. For example, two modes with frequencies separated
by a part in 105 can be distinguished to high precision after evolution for many fewer than 105 oscillation peri-
ods; in fact, two modes with exactly the same frequency can be distinguished. To distinguish a 2-fold degen-
eracy requires twice as much work: two initial conditions must be evolved, rather than one.

FDM identifies frequencies with high precision – well beyond the limits of the uncertainty principle. That is,
a frequency may be measured to a part in 1010 from a simulation run for only 100 oscillations. The uncertainty
principle is not really violated, however [12]; it relates the required simulation duration to the average sepa-
ration between mode frequencies [13].
3. Diagonalization: extracting eigenvalues and eigenmodes

Although filtering comes before diagonalization in FDM, we first review the diagonalization, because
understanding the diagonalization technique will reveal the requirements for the filtering. Unlike other treat-
ments of diagonalization [4,5,7] we avoid inner products and the issue of whether they are Hermitian or com-
plex symmetric.

The diagonalization part of FDM uses small-scale linear algebra to distinguish nearby eigenvalues within
the desired range from one another. The goal is to find eigenmodes vm,m = 1, . . . ,M, which are eigenmodes of
some operator H; that is, Hvm = kmvm. The eigenmodes do not need to be orthogonal. In this section we pres-
ent the linear algebra necessary to extract the km and vm, assuming we have found a small number L P M of
vectors s‘ spanning the subspace containing the desired eigenmodes.

An elementary theorem of linear algebra states that a matrix is determined by its action on a basis; we
determine the matrix H – or rather, the small block of H restricted to the subspace of desired eigenmodes
– through the relationship between the s‘ and
r‘ � Hs‘: ð1Þ

(We could equally well consider application of any sufficiently invertible function of H, such as exp(isH),
which would yield eigenvalues exp[ikms] with the same eigenvectors [6].)

Because the s‘ span the desired eigen-subspace, any vm can be written
vm ¼
XL

‘¼1

am;‘s‘: ð2Þ
Applying H yields
kmvm ¼
XL

‘¼1

am;‘r‘: ð3Þ
Once the s‘ and r‘ are found, Eqs. (2) and (3) can be solved for the km, which are eigenvalues of H, and the
coefficients am,‘, which express the eigenvectors of H in terms of the known s‘. In practice this set of equations
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may be both highly overdetermined and nearly underdetermined, like many parameter-fitting problems; sin-
gular value decomposition (SVD) offers a robust solution [14].

To ease the burden of computational linear algebra, we work mainly with P components of the vectors s‘ and
r‘, e.g. s‘,p and r‘,p for p = 1, . . . ,P. (This is a particularly simple and computationally efficient case of taking the
inner product of Eqs. (2) and (3) with a set of vectors Up; i.e. s‘,p = hUpjs‘i for a chosen set of P vectors Up [6].)

The numerical work begins with the construction of the P � L matrices S and R
Sp‘ � s‘;p; Rp‘ � r‘;p; ð4Þ

where the ‘th column of S holds the P components of s‘, and similarly each column of R holds components of
r‘.

Eqs. (2) and (3), written for each of the P components, are
vm;p ¼
XL

‘¼1

Sp‘am;‘; kmvm;p ¼
XL

‘¼1

Rp‘am;‘: ð5Þ
Treating am as a column vector with L components (labeled am,‘) and treating vm as a P-component vector,
these equations become
vm ¼ Sam; kmvm ¼ Ram; ð6Þ

which combine to form a generalized eigenvalue equation
Ram ¼ kmSam: ð7Þ

S and R are known; if we can solve Ra = kSa for its eigenvalues k and eigenvectors a, then we will have found
the eigenvalues of H, as well as its eigenmodes vm (as linear combinations of the known s‘). When solving this
generalized eigenvalue equation, intuition may be aided by considering that R = HS, although this is not
strictly true unless P includes the full set of components.

We solve Eq. (7) in spirit by multiplying both sides by S�1 and solving the resulting standard eigenvalue
equation. Equivalently (since the null space of S� is orthogonal to the range of S) we may prefer to solve
SyRam ¼ kmSySam; ð8Þ

inverting S�S instead of S. However, S and S�S might not be invertible using finite-precision arithmetic, and
they might not even be invertible in theory – S might not even be square (P > L facilitates error analysis as we
later demonstrate). Truncated SVD techniques can used to accomplish this inversion (see [14] on SVD) as sug-
gested in [4]; however, we prefer to use SVD with Tikhonov regularization [7].

In summary, brief directions for finding eigenvalues and eigenvectors of H:

(1) Find L filtered state vectors s‘ that span the subspace of desired eigenmodes of H. L must be at least as
large as the number of modes in the subspace, yet small enough that the ensuing eigenvalue problem can
be easily solved numerically.

(2) Apply H to each filtered state vector to get r‘ = Hs‘.
(3) Construct the P � L matrix Sp‘ = s‘,p from P different components of each filtered state s‘, where P P L.

Similarly construct Rp‘ = r‘,p.
(4) Solve the generalized eigenvalue equation S�Ra = kS�Sa for eigenvalues k and eigenvectors a. This can

be numerically challenging, so we suggest finding the eigenvalues of S�S and then solving
ðSyS þ a2

cutoffÞ
�1SyRa ¼ ka, where a2 is less than the significant eigenvalues and greater than the insignif-

icant eigenvalues of S�S.
(5) Eigenvalues of H are the km. Eigenvectors of H are vm ¼

PL
‘¼1am;‘s‘.

(6) If P > L, estimate the relative error �m of each mode (see Section 3.1). Modes with errors near one are doubt-
ful; if H has only real eigenvalues, then modes with eigenvalues that have imaginary parts larger than the
error are also doubtful. Increasing acutoff may vanquish doubtful modes.

We note that the eigenvalues km and the coefficients am,‘ are calculated using only P components of the s‘
and r‘. The entire vectors (s‘ and r‘) are needed only to find all components of the eigenmodes.
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3.1. Accuracy

Error in calculating eigenvalues and eigenmodes arises from the incomplete isolation of a subspace of M

eigenmodes, so that Eqs. (2) and (3) are only approximately valid. The actual vectors s‘ and r‘ include noise
comprising other eigenvectors.

When an eigenvector vm is calculated, its error can be told by comparing Hvm to kmvm [4]. As long as P > L

(preferably P � L� 1), the relative error in each eigenvalue can be easily estimated by
�m ¼
kRam � kmSamk
kRamk

: ð9Þ
Eigenvalues with large �m (close to one) are suspicious; they may not be close to eigenvalues of H. Later we will
show the accuracy of this estimate in an example (see Fig. 1).

Eigenmodes are calculated with similar accuracy, except that nearby eigenmodes get mixed together. If
eigenvalue k1 is close to k2, then the relative error in the corresponding eigenmodes will be increased roughly
by a factor of jk1j/jk2 � k1j (up to 100% error). Exactly degenerate modes cannot be distinguished at all (not
even theoretically, without recourse to some operator other than H). However, the subspace spanned by the
two eigenmodes will be accurately computed, even when k1 = k2.

The accuracy for a given eigenvalue will be limited by how much of the corresponding mode is present in
the filtered states. We can estimate the relative contribution of mode vm to the s‘ by
Cm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
p¼1

PL
‘¼1am;‘s‘;p

�� ��2PL
‘¼1jam;‘j2

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
p¼1jvm;pj2PL
‘¼1jam;‘j2

vuut ; ð10Þ
(we will show in Fig. 2 how this relates to the error).

3.2. Source of error

While noise in the s‘ may be reduced to nearly machine precision by carefully filtering out unwanted eigen-
modes, subsequent application of H disproportionately emphasizes unwanted modes with high eigenvalues.
For example, if s = v1 + vmax, then Hs = k1v1 + kmaxvmax. Thus modes with eigenvalue magnitude kmax are
emphasized in the r‘ by a factor kmax/k1 relative to modes with eigenvalue k1. If the machine precision is
10�16, and eigenvalues of interest are around 1, while the maximum eigenvalues are near kmax � 106, then
one will encounter a relative error of at least 10�10 in the r‘. With double precision this error is not a major
concern, but it may pose problems for single-precision computation.

4. Filtering

In this section, we demonstrate a new method for filtering out unwanted eigenmodes, using excitations with
frequency-domain properties that separate the desired from the undesired modes, but do not prefer one fre-
quency over another within the desired range; after all, the diagonalization step is responsible for separating
frequencies within the desired range.

We showed in Section 3 how to identify eigenmodes and eigenvalues within an eigen-subspace spanned by a
set of vectors s‘. Such a set of vectors is found by computing a set of linearly independent vectors from which
all the unwanted eigenmodes have been removed.

We will consider systems with oscillatory eigenmodes that evolve as exp(�ixmt) for various eigenfrequen-
cies xm. Such a system can always be described by a state vector s that evolves in time according to
sðt þ DtÞ � sðtÞ
Dt

¼ �iHsðtÞ: ð11Þ
An eigenmode of H with eigenvalue km evolves with frequency xm, where
�ixmDt ¼ lnð1� ikmDtÞ: ð12Þ
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The operator H need not be explicitly known, as long as an algorithm (a time-domain simulation) can advance
any state s(t) to time t + Dt; we can then evaluate Hs(t) from s(t) and s(t + Dt). We emphasize that s(t) may be
real, and may be advanced in time without any complex arithmetic, while still being described as above. This
form covers a large range of systems, namely those with linear, time-invariant equations of motion.

The eigenfrequencies may be complex, but if they have large imaginary parts (e.g. if resonances are broad
compared to typical mode separation) then the techniques described here may not adequately isolate the
desired modes.
4.1. Using broadly-filtered states

To find a set of state vectors s‘ that spans the desired subspace, we first drive a simulation to exclude all
unwanted modes, so that after time t = T the simulation state s(T) contains all desired eigenmodes, excluding
all others. We then evolve the simulation further to find other linearly independent states containing the same
modes; s(T) and s(T + s) contain the same modes, and they are linearly independent.

A set of vectors spanning the desired subspace is therefore s‘ = s(T + ‘s) for ‘ = 1, . . . ,L and Ls � p/Dxavg

– as long as L P M – where M is the number of modes in the subspace, and Dxavg is the average spacing
between the modes. If two modes have frequencies separated by much less than Dxavg, they will be less accu-
rately calculated; Section 4.3 will explain how to find such degenerate modes.

This strategy can reduce computation time by a factor of five or more (as shown in Section 4.4).
4.2. Excitation to exclude unwanted frequencies

Though often less difficult, driving (or exciting) a system with a certain f(t) is essentially equivalent to filter
operators that emphasize frequencies x with relative strength j~f ðxÞj, where ~f is the Fourier transform of f(t)
(see [15,16] and Appendix A).

Driving a time-domain simulation is easily done by adding a quantity gf(t)Dt to s(t) at every time step Dt;
thus Eq. (11) becomes
sðt þ DtÞ � sðtÞ
Dt

¼ �iHsðtÞ þ gf ðtÞ: ð13Þ
The driver gf(t) will tend to excite eigenmodes that have field patterns similar to g and that have frequen-
cies present in f(t). For example, electromagnetic simulations are typically excited by a time-varying current
density (at every time step, the current is added to the electric field according to Ampere’s Law); a mode
with a large axial electric field will be most strongly excited by an axial current oscillating at the mode
frequency.

Other FDM variants generate each filtered state around a different frequency, essentially using
f(t) = H(t)H(T � t)sin(x‘t), where H is the Heaviside step function, or a Gaussian-modulated sinusoid
f ðtÞ ¼ sinðx‘tÞ exp½�r2

xðt � T=2Þ2=2	. Such excitation can be used with time-domain simulations to apply
FDM as in, e.g. [4,5,15,16].

However, it is faster to generate the s‘ from broadly-filtered states as described in Section 4.1 (Section 4.4
compares the two approaches). The following driver:
f1ðtÞ ¼ �2
sin½x1ðt � T=2Þ	

t � T=2
exp � r2

xðt � T=2Þ2

2

" #
; ð14Þ
yields a state s(T) that excludes frequencies outside the interval [�x1,x1], because it has a Fourier transform of
nearly unity amplitude between �x1 and x1 and nearly zero elsewhere:
j~f 1ðxÞj ¼
1ffiffiffiffiffiffi

2p
p

rx

Z x

�1
dx0 exp �ðx

0 þ x1Þ2

2r2
x

" #
� exp �ðx

0 � x1Þ2

2r2
x

" #
ð15Þ
(here f1(t) is normalized so that ~f 1ð0Þ ¼ 1 in the limit of x1� rx).
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The function ~f 1ðxÞ is to the ideal broadband filter Hðx2
1 � x2Þ what a Gaussian ~f ðxÞ centered around fre-

quency x1 is to the ideal narrow-band filter, the Dirac delta-function d(x � x1). ~f 1ðxÞ has tails slightly steeper
than a Gaussian with width rx.

For a frequency excitation between x1 and x2, one can simply subtract f1(t) from f2(t) (defined as f1 above,
replacing x1 with x2).

Roughly, to reduce amplitudes of modes with frequencies above xb to a relative level h, we must choose rx

so that exp½�ðxb � x2Þ2=ð2r2
xÞ	 < h and run the simulation for a time T such that exp½�r2

xðT=2Þ2=2	 < h (this
ensures that the abrupt start and stop of the driving force at t = 0 and t = T do not appreciably excite
unwanted modes).

The choice of rx is determined by the mode spacing. From rx we can determine the simulation duration T.
For example, we might want to reduce unwanted mode amplitudes by h � 10�16 in a double precision simu-
lation; this requires
T >
17

rx
: ð16Þ
Of course, shorter durations may be used, but results will be less precise due to low-level contamination by
unwanted modes.
4.3. Distinguishing degeneracies

The filtered states s‘, as found above, cannot span degenerate subspaces comprising modes with the same
(or nearly the same) frequencies. A simple example illuminates the problem: suppose a system has only two
modes, but they have identical frequencies. A random initial state might be s(0) = b1v1 + b2v2, which evolves
as s(t) = [b1v1 + b2v2]e�ixt, which is always proportional to s(0). Because the modes evolve with the same fre-
quency, every filtered state s‘ has the same linear combination of v1 and v2; to span the space of v1 and v2,
another independent combination of v1 and v2 is needed. However, if one computes two sets of filtered vectors

from two simulations with different initial conditions, perhaps sð1Þð0Þ ¼ bð1Þ1 v1 þ bð1Þ2 v2 and sð2Þð0Þ ¼
bð2Þ1 v1 þ bð2Þ2 v2 then one can form arbitrary linear combinations of v1 and v2 with different combinations of

s
ð1Þ
‘ and s

ð2Þ
‘ .

To find eigenmodes with exactly or nearly the same frequency, one can run several simulations, with each
simulation excited by a different driving pattern g (which is the same as applying a filter operator to different
initial conditions g). If one expects at most J-fold degeneracies (or near-degeneracies, compared to the average
frequency spacing), one must run at least J different simulations, including the s‘,p from all simulations in the
matrix Sp‘ and similarly for Rp‘. By running J + 1 simulations, one can verify that any degeneracies are at
most J-fold.
4.4. Broad vs. narrow filtering

Isolating an eigen-subspace using broadly-filtered states takes less computation time than the usual method
of computing narrowly-filtered states, as long as eigenmodes are desired and the problem is large enough that
storing and performing an FFT of every component of s(t) takes more time than running the simulation itself
(i.e. whenever a low-storage method is necessary). We consider a simplified analysis, extracting M modes with
average spacing Dxavg.

With broad filtering, the bulk of computation is used to compute the first filtered state. For an accuracy of
h � 10�12, a simulation time T > 15/Dxavg is required (demanding that rx < Dxavg and T > 2(7.4)/rx). These
parameters suppress modes more than 7.4Dxavg away from the desired range by at least h. We can extract as
many additional independent states as we need by running the simulation for an additional time p/Dxavg.
Therefore the total time is approximately 18/Dxavg.

With narrow filtering, using a square window for best performance (see Appendix C), we must calculate at
least M different filtered states, each of which takes a time T > 2p/Dxavg (see Appendix B). The total time is
therefore 2pM/Dxavg.
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Narrow filtering appears to be faster when M < 3; however, because a single square window provides poor
isolation, one must always use many filtered states at regularly-spaced frequencies around the desired frequen-
cies to achieve reasonable accuracy (for an accuracy of h � 10�12 we estimate roughly that more than 15 fil-
tered states would be needed); see Appendix C for more explanation.

Therefore, we expect broad filtering to require less than 1/5 the computation time needed for narrow
filtering.

Though slower, square-window filtering is more robust than broad filtering. If the broadly-filtered
state does not sufficiently exclude unwanted modes (perhaps because the mode density turns out to
be higher than expected), then the accuracy of all modes will suffer. This can be a problem when
the mode density increases rapidly with frequency. With square-window-filtering, modes in the center
of the range may still be well-isolated even when modes at the edge of the range cannot be accurately
distinguished.

Of course, when eigenmodes are not needed, Fourier transformation (using a square window) of the
time evolution of a small number of components sp(t) from a single simulation can yield all the filtered
state vector components necessary to find the frequencies. In this case, the total simulation time is merely
2p/Dxavg (assuming the Fourier transformation of P components takes negligible time), which should
always be faster than running a separate simulation for each filtered state.

5. Modes in a nearly square cavity

To evaluate the technique described in this paper, we calculated TM electromagnetic resonant eigenmodes
of a rectangular 2D cavity (we use TM to mean that the magnetic field is transverse to the unsimulated third
dimension). Here the operator of interest is the discretized version of H = $ � $�; we used the standard Yee
algorithm [17] to discretize H and evolve the electric and magnetic fields.

With sides of Lx = 1 m and Ly = 1.00001 m, we expect near-degeneracies. For this cavity, the eigen-
modes and eigenvalues of the finite-difference equations are known exactly. Eigenmode TMmn has an electric
field
Ezðx; yÞ ¼ sin
mpx
Lx

� �
sin

npy
Ly

� �
; ð17Þ
(regardless of the cell lengths Dx and Dy). The eigenvalues, however, do depend on the grid cell size
k2
mn ¼

4

Dx2
sin2 mpDx

2Lx

� �
þ 4

Dy2
sin2 npDy

2Ly

� �
: ð18Þ
The oscillation frequency of mode TMmn is xmn � ckmn, where c is the speed of light; this relationship is
approximate because of the discretization of time. We used a 500 � 500 grid (Dx = Lx/500,Dy = Ly/500).

We chose to isolate modes between k1 = 24 m�1 and k2 = 27 m�1, well above the lowest TM mode, which has
k � 4.4 m�1. From the average mode density (one TM mode per 4p2/(LxLy) volume of k-space) we can expect about
13 modes in this range; therefore, the average mode spacing should be approximately Dkavg = (k2 � k1)/13.
5.1. Excitation

To isolate the desired subspace of eigenmodes, we used an excitation as described in Section 4.1, with
x1 = c(24.1 m�1) and x2 = c(26.9 m�1) (where c is the speed of light) and rx = Dx avg = (x2 � x1)/13. The
excitation was run for a time T = 2(7.4)/rx. After the excitation turned off, the simulation ran an additional
time p/Dxavg, during which field patterns (the s‘) were periodically saved to disk.

To excite a simulation, we added a source current Jz to Maxwell’s equations (expressed here in convenient units)
o

ot
Bðx; y; tÞ ¼ �r � Eðx; y; tÞ;

o

ot
Eðx; y; tÞ ¼ r � Bðx; y; tÞ � ẑJ zðx; y; tÞ:

ð19Þ



10-9 10-8 10-7
10-11

10-10

10-9

10-8

Estimated error in k

A
ct

ua
l e

rr
or

 in
 k

10-9 10-8 10-7
10-11

10-10

10-9

10-8

Estimated error in k

A
ct

ua
l e

rr
or

 in
 k

Fig. 1. Actual error in kmn vs. (one-half) the error estimated by Eq. (9).
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The source current simply adds an amount Jz(x,y, t)Dt to the electric field Ez at each time step. The spatial
profile of Jz was chosen by assigning a random number between �1 and 1 to each grid point (x,y); the spatial
profile was then modified by a time-dependent prefactor
Fig. 2.
Eigenm
J zðx; y; tÞ /
2 sin½x1ðt�T=2Þ	

t�T=2
� sin½x2ðt�T=2Þ	

t�T=2

h i
e�r2

xðt�T=2Þ2=2 0 6 t 6 T ;

0 otherwise;

(
ð20Þ
selecting T/2 = 7.4/rx.
To verify that any degeneracies were at most 4-fold, we had to run 5 different simulations; however, we

show results using just the first four of those simulations.

5.2. Choosing H

Eq. (19) is written in the same form as Eq. (13), where the state of the system is uniquely determined by
s = (E,B). However, we will find eigenmodes of a different but closely-related operator H, which describes
the time evolution of s = E as a second-order differential equation: (after the driving current turns off)
� o2

ot2
Eðx; y; tÞ ¼ r �r� Eðx; y; tÞ ¼ HEðx; y; tÞ: ð21Þ
10
-2

10
-1

10
0

10
-9

10
-8

10
-7

Eigenmode contribution
10

-2
10

-1
10

0

10
-9

10
-8

10
-7

Eigenmode contribution

E
st

im
at

ed
 e

rr
or

 in
 k

Estimated error in k (one-half of Eq. (9)) vs. the normalized contribution of the corresponding eigenmode to the s‘ from Eq. (10).
odes with small contributions are drowned out by those that loom larger in the s‘.



G.R. Werner, J.R. Cary / Journal of Computational Physics 227 (2008) 5200–5214 5209
When Eq. (19) has an eigenmode (E,B) with eigenvalue k, its time-reversed state (E,�B) is an eigenmode with
eigenvalue �k. The very same E is an eigenmode of H in Eq. (21) with eigenvalue k2. By isolating an eigen-
subspace of Eq. (19) with jkj 2 [k1,k2] we have also isolated an eigen-subspace of H with k2 2 ½k2

1; k
2
2	. Once the

subspace of an operator is isolated, the techniques in Section 3 can be applied regardless of whether the eigen-
values are frequencies or squared frequencies, or have any connection at all with frequency. The eigenvalue-
frequency connection was only important for isolating a mode with a certain eigenvalue by driving the sim-
ulation at a certain frequency.

By using this operator H above, we have chosen to work with eigenvalue k2 instead of k; we can no longer
distinguish positive and negative frequencies (so phase information is lost), but we have reduced the size of a
state vector from (E,B) to just E.

We could equally well use both E and B and find eigenmodes of Eq. (19). This would yield phase informa-
tion, and would be essential if energy were not conserved (if the frequency had an imaginary component). It
would also double the size of each state vector and double the number of state vectors needed, requiring more
storage (but not more computation time). However, it would increase the accuracy of the method, because the
accuracy is limited by the ratio of maximum to desired eigenvalue (see Section 3.1), which is smaller when the
eigenvalue is k than when the eigenvalue is k2. In any case, with double precision this method is likely to yield
greater accuracy than needed.

5.3. Constructing the s‘ and Sp‘

Expecting around 13 modes, we extracted I = 5 different field patterns (at times ti during the time p/Dxavg

after excitation) from each of J = 4 simulations, giving a safety margin to find up to L = IJ = 20 modes in case
of unexpected modes. In other words, we saved to disk 20 state vectors
s‘ ¼ EðjÞz ðtiÞ; ð22Þ

where i = 1, . . . , I and j = 1, . . . ,J and ‘ = I(j � 1) + i; the components of s‘ are the values of EðjÞz ðtiÞ at different
points in space.

The total simulation time was approximately 4(2 � 7.4 + p)/Dxavg � 72/Dxavg; with narrow, square-win-
dowed filtering, we would have required a simulation time (assuming states filtered around 15 regularly-spaced
frequencies) of 4(15 � 2p)/Dx � 377/Dxavg.

Although we need all components of the s‘ to compute the eigenmodes, we performed the linear algebra of
Section 3 with just P = 40 components; that is, we randomly chose points (xp,yp) for p = 1, . . . ,P to compute
the Sp‘ matrix
Sp‘ ¼ s‘;p ¼ EðjÞz ðxp; yp; tiÞ: ð23Þ
5.4. Constructing Rp‘

To find the r‘, as in Eq. (1), we did not apply H directly to the s‘ (though we have done so with nearly iden-
tical results). Instead, we used the known time evolution of the state vectors to reconstruct the effect of H on
them, using Eq. (21)
Rp‘ ¼ r‘;p ¼ ðHs‘Þp ¼ ðHEðjÞðtiÞÞzðxp; ypÞ

¼ �
EðjÞz ðxp; yp; ti þ DtÞ � 2EðjÞz ðxp; yp; tiÞ þ EðjÞz ðxp; yp; ti � DtÞ

Dt2
; ð24Þ
(using a standard leap-frog time-advance to discretize the d2/dt2 operator). This required storing the values of
the sp at ti � Dt, ti and ti + Dt.

5.5. Extracting eigenvalues and eigenmodes: results

In comparison to running the simulations, calculating the eigenmodes took a negligible time (not more than
a few seconds). After finding the S and R matrices as above, we solved the eigenvalue problem S�Ra = kS�Sa

as in Section 3, using acutoff = kS�Sk ecutoff, where kS�Sk is the maximum eigenvalue of S�S and ecutoff = 10�12.



Table 1
Exact eigenvalues and the relative errors in the calculated values, as well as the errors estimated by Eq. (9); here errors for k2 were
converted to errors for k by halving them

Mode (TMmn) kmn (m�1) Relative error Estimated error

TM37 23.9237706063 7.7 � 10�9 2.5 � 10�8

TM73 23.9239355894 2.3 � 10�10 1.2 � 10�8

TM56 24.5352071863 1.4 � 10�11 8.1 � 10�10

TM65 24.5352514256 4.1 � 10�10 1.2 � 10�9

TM18 25.3254543627 2.0 � 10�8 8.6 � 10�8

TM81 25.3256998232 9.9 � 10�9 4.1 � 10�8

TM47 25.3264357694 6.3 � 10�9 1.2 � 10�8

TM74 25.3265643392 4.6 � 10�9 1.5 � 10�8

TM28 25.9034160843 2.2 � 10�10 1.9 � 10�9

TM82 25.9036446381 6.8 � 10�10 1.8 � 10�9

TM66 26.6555857982 2.5 � 10�11 5.2 � 10�10

TM38 26.8390177976 6.5 � 10�10 2.8 � 10�9

TM83 26.8392199987 3.5 � 10�10 1.1 � 10�9

TM57 27.0230051542 8.1 � 10�10 2.7 � 10�9

TM75 27.0230927865 6.3 � 10�10 2.2 � 10�9

5210 G.R. Werner, J.R. Cary / Journal of Computational Physics 227 (2008) 5200–5214
Fifteen of the resulting eigenvalues had estimated errors well below 10%. These eigenvalues k2
mn were real

and corresponded to the actual TMmn modes (no modes between k2
1 and k2

2 were missed). Table 1 shows the
exact eigenvalues kmn (using Eq (18)) and the relative errors of the calculated values, as well as the error esti-
mated using Eq. (9); Fig. 1 shows that Eq. (9) provides a fairly accurate, if conservative, estimate of the error.

The least error (around 10�10 as shown in Table 1) is about as expected; with a maximum/minimum eigen-
value ratio around 104 and a machine precision of 10�16, we expected relative errors above 10�12 (plus a bit
more for errors of finite-precision numerics). However, only the eigenmodes that figure largely in the s‘ have
such low error; Fig. 2 shows that the error in each eigenvalue is inversely proportional to the contribution (see
Eq. (10)) made by the corresponding eigenmode to the s‘.

Table 2 shows the relative error in eigenvalues and eigenmodes (in the ‘2-norm) for selected modes. The
baseline accuracy of the calculated eigenmodes (Fig. 3 shows the calculated TM73 mode) is similar, but the
accuracy of individual modes is degraded to the extent that eigenvalues are close together – after all, exactly
Table 2
Relative errors in eigenvalues k2

mn and eigenmodes for selected modes, as well as the squared inner products between calculated and exact
modes

Mode (3,7) (7,3) (1,8) (8,1) (4,7) (7,4) (6,6)

k2 err. 1.54 � 10�8 4.51 � 10�10 4.05 � 10�8 1.98 � 10�8 1.25 � 10�8 9.16 � 10�9 5.08 � 10�11

Mode err. 2.77 � 10�4 2.28 � 10�4 2.39 � 10�3 1.43 � 10�3 6.37 � 10�4 1.76 � 10�3 1.90 � 10�8

Squared inner products jhvmjvn,calcij2

TM37 1.00 5.22 � 10�8 1.09 � 10�13 2.79 � 10�14 1.53 � 10�15 3.67 � 10�15 3.10 � 10�18

TM73 7.67 � 10�8 1.00 1.35 � 10�16 2.05 � 10�16 5.65 � 10�19 2.56 � 10�17 1.03 � 10�18

TM18 8.12 � 10�15 2.13 � 10�15 1.00 1.05 � 10�6 3.71 � 10�9 6.18 � 10�9 7.42 � 10�18

TM81 8.60 � 10�15 1.87 � 10�16 3.39 � 10�6 1.00 6.78 � 10�9 7.82 � 10�9 2.09 � 10�17

TM47 2.99 � 10�15 9.86 � 10�15 1.89 � 10�6 8.21 � 10�7 1.00 3.08 � 10�6 6.46 � 10�18

TM74 1.42 � 10�15 5.51 � 10�16 4.07 � 10�7 1.72 � 10�7 3.95 � 10�7 1.00 2.55 � 10�18

TM66 2.55 � 10�14 7.35 � 10�15 6.88 � 10�13 1.46 � 10�13 9.53 � 10�15 1.66 � 10�14 1.00

The main error in TM37 is due to mixing of the nearly degenerate TM73; because it has no near-degeneracy, TM66 has a low error;
because TM18, TM81, TM47 and TM74 are all nearly degenerate, they are mixed together at levels much greater than the eigenvalue
error.
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Fig. 3. Contours of Ez for the calculated TM73 mode.
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degenerate eigenmodes cannot be distinguished. By looking at inner products of calculated and exact modes,
one can see that most of the error in the TM37 mode is due to spurious amounts of the TM73 mode; however,
the TM37 
 TM73 subspace is found with an error around 10�7. The TM66 mode is very accurate because no
other modes have eigenvalues closer than 1%; whereas k28 and k82 differ by less than 20 ppm.

FDM can actually distinguish fairly closely-spaced eigenvalues, though with an accuracy that diminishes
with the spacing. For our broad-excitation method, two modes separated by Dx are best distinguished by
comparing simulation states separated by a time �p/Dx (or greater) so that the modes evolve to completely
different phases. However, the modes still evolve to noticeably different phases after a time 0.01p/Dx – but the
accuracy will suffer by a factor of about 100.

We showed that with J = 4 simulations we extracted all 15 eigenvalues with errors between 10�11 and 10�8.
If we use just J = 2 simulations, we can extract the same 15 modes with errors (in eigenvalue) between 10�10

and 10�7 (with the worst error being for the 4-fold near-degeneracy).
If we use just J = 1 simulation, only 14 modes are found (one of the 4-fold degenerate modes is not found)

with errors from 10�10 (for the isolated TM66 mode) to 10�5.

6. Conclusion

We have described and demonstrated a method to extract degenerate modes and frequencies from time-
domain simulations using excitation to create filtered states for use with the filter-diagonalization method.
This approach requires low-storage and is very easy to implement; in many cases no changes need be made
to the time-domain code to achieve performance on par with dedicated frequency-domain codes (also: this
method easily finds non-orthogonal eigenmodes as well as slowly-decaying modes, and can extract modes with
eigenvalues in a specified range).

Although excitation can be used to create states filtered around regularly-spaced frequencies, we have dem-
onstrated a new way of filtering – broad filtering – that can produce filtered states roughly five times faster
than other FDM schemes.

We also suggested a way of estimating (quickly) the error of calculated eigenvalues, and demonstrated its
agreement within an order of magnitude of the real error.

Although we focused on systems with oscillatory modes, the same method could be used even in the pres-
ence of some purely growing modes, as in ideal magnetohydrodynamics. Typically, when instability occurs, a
few modes grow exponentially, while the rest of the modes oscillate. The fastest-growing modes naturally iso-
late themselves by outgrowing all other modes; the techniques of Section 3 can then be used to identify them.
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Subsequently, these growing modes could be eliminated from the excitation to allow identification of other
stable modes.

This method also works with complex frequencies; again, the difficulty lies in mode isolation. Since slowly-
growing or -decaying oscillating modes have narrow resonances, they can be easily isolated with the methods
described in this paper. Even broader resonances can be isolated as long as the number of other modes over-
lapping those resonances does not become too large.
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Appendix A. Low-storage FDM: excitation vs. filter operators

For large simulations with small time steps, the Fourier transformation approach to filtering is impractical
because it requires storing s(t) at every time step, and filtering every component of the state vector s(t), which
could have a billion components.

To reduce storage, one operates on an initial state s with a frequency-domain filter that directly yields a
filtered state s‘ [15,16,19]. The frequency-domain filter must be applied anew for each s‘, but only the final
s‘ need be stored to disk.

Ref. [15] applies a Gaussian filter operator
s‘ ¼ exp½�ðH � x‘Þ2=ð2r2
xÞ	s; ðA:1Þ
expanded in polynomials in H (which can be applied to s), using Chebyshev polynomials.
The resulting s‘ is in principle the same as if s(t) had been evolved for a time T and then been filtered via

Fourier transformation using a Gaussian window wðtÞ ¼ exp½�r2
xðt � T=2Þ2=2	.

The resulting s‘ is also the same as if it had been produced by a Gaussian excitation f(t) = w(t)sin(x‘t); both
excitation and the filter operator in [15] require the same amount of computation.

The computation required to filter a vector increases with the narrowness and height of the filter and the
maximum eigenvalue xmax of H. We have empirically found that about 7xmax/rx applications of H will accu-
rately approximate the Gaussian filter down to about 10�12 below its peak (see [15] to verify this for
rx=xmax ¼ 0:01=

ffiffiffi
2
p

).
A Gaussian excitation requires similar computation time: to simulate the Gaussian tails down to 10�12

requires exp½�r2
xðT=2Þ2=2	 � 10�12 or T > 2(7.4)/rx. A simple algorithm generally applies H once each time

step, which is limited to Dt < 2/xmax for stability (the Courant–Lewy–Friedrichs condition). Therefore, about
7.4xmax/rx applications of H are needed.

Appendix B. Simulation time using narrow frequency filtering

When computing narrowly filtered state vectors, that is, filtering the s‘ around regularly-spaced frequencies
x‘ using an excitation f‘(t) = H(t)H(T � t)sinx‘t (or equivalently, using square-windowed Fourier transfor-
mation), we believe that the simulation should be run for time T > 2p/Dxavg, where Dxavg is the average fre-
quency spacing of modes in the desired range.

Other authors have explored the minimum simulation time more carefully; we will try to interpret their con-
clusions with regard to this paper. Ref. [5] concludes that T > 4p/Dxavg. However, that work does not use the
time evolution of different points of a field pattern (i.e. sp(t) for different points p), but instead considers a sca-
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lar-valued time series s(t). Therefore, half the time is used to construct artificial field patterns, e.g.
sp(t) = s(np + t); in the end, all sp(t) are known for a time 2p/Dxavg. Therefore, we believe Ref. [5] agrees with
our conclusion that T > 2p/Dxavg.

Ref. [13] also notes the factor of two difference in times. It goes on to claim that Treq > p/Dxavg, but at one
point suggests using a window of H(T2 � t2) so their simulations might run from t = �Treq to t = Treq, which
would agree with our conclusion that the total simulation time (for one filtered state) is T > 2p/Dxavg.

From experience we know that there is no sharp dividing line between failure and success of this method.
One can extract frequencies using T = p/Dxavg, but using T = 2p/Dxavg will yield greater accuracy. While we
have not thoroughly explored this issue, our limited experiments suggest that the fastest way to reach a given
accuracy uses T � 2p/Dxavg.

Appendix C. The advantage of the square window

When using narrow filtering with FDM, i.e. each s‘ is filtered around different frequency x‘, a
square-window filter works best. By square window, we mean using a sinusoidal excitation f(t) =
w(t)sin(x‘t) with a square window w(t) = H(t)H(T � t). Because of the abrupt start and stop, this excita-
tion excites modes with frequencies far from x‘ at significant amplitudes; it might therefore be surprising
that it works better than other windows (such as a Gaussian w(t)) that provide better isolation from dis-
tant frequencies.

We call w(t) a window function (or a weighting function) in analogy with windowed Fourier transforms.
When using Fourier transformation to produce filtered states, one evolves a state s(t) from a random initial
state s(0), and then computes
s‘ ¼
XN�1

n¼0

wðtnÞsðtnÞe�ix‘tn : ðC:1Þ
This results in essentially the same filtered state as when exciting with f(t) = w(t)exp(ix‘t).
Smoother window functions w(t) are usually introduced for better isolation (see [14] on power spectra), and

early FDM schemes used a Gaussian window to achieve the desired resolution [2,4]. However, Refs. [5,13]
found the square window to be better, for reasons explained in [6], upon which we will now expand.

Briefly, when using a square window, any individual s‘ is poorly isolated from frequencies far from x‘,
meaning that s‘ is a superposition of modes including modes with distant frequencies. However, there are lin-
ear combinations of nearby s‘ that are very well-isolated from distant frequencies. The eigensolving in Section
3 automatically finds modes as linear combinations of the s‘ that are well-isolated.

More carefully, we can compare the square window to a window w(t). Filtering a signal s(t) (ignoring tem-
poral discretization for the moment) around x‘ with a square window yields
~ssqrðx‘Þ �
Z T

0

sðtÞe�ix‘tdt; ðC:2Þ
(this is the Fourier series coefficient of s(t) for x‘). Filtering s(t) around x‘, with a window w(t), yields
~swðx‘Þ �
Z T

0

sðtÞwðtÞe�ix‘tdt /
X1
‘0¼�1

~wsqrðx‘ � x‘0 Þ~ssqrðx‘0 Þ; ðC:3Þ
where x‘ = 2p‘/T (since the Fourier series of a product is the convolution of the Fourier series of the factors).
A good window w(t) can prevent frequencies far from x‘ from contributing to ~swðx‘Þ. (By considering the
Fourier transform of a Gaussian w(t) truncated to a duration T, it can be shown that frequencies more than
2pQ/T away from x‘ can be suppressed by a factor h � exp[�pQ/2].)

While ~ssqrðx‘Þ contains significant contributions from signals in s(t) at frequencies far from x‘, Eq. (C.3)
shows that the linear combination of ssqr values
XQ

q¼�Q

aq~ssqrðx‘þqÞ; ðC:4Þ
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is well-isolated from modes far from x‘ if Q is sufficiently large and the coefficients are chosen to be
aq ¼ ~wsqrðxqÞ for a good window w(t).

Using square-window filtering can provide excellent isolation, but only if many states are calculated for
many frequencies in a row. Even if only a few modes are desired, one must still calculate many filtered states
(using a square window); we estimate from a limited number of tests that more than 15 filtered states must be
found to achieve errors below 10�12.

An important advantage when using many square-window filtered states is that the mode-finding algorithm
(Section 3) will automatically choose linear combinations that achieve the best isolation – essentially choosing
the best window.

Of course, when filtered states are found by Fourier transform, the Fourier transform yields filtered states
for all possible x‘ at once. When there is no cost for computing extra filtered states, the square-window filter is
clearly the fastest option.
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